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Summary. Increasingly, researchers are attempting to replicate published original studies by
using large, multisite replication projects, at least 134 of which have been completed or are on
going. These designs are promising to assess whether the original study is statistically con-
sistent with the replications and to reassess the strength of evidence for the scientific effect of
interest.However, existing analyses generally focus on single replications;when applied to multi-
site designs, they provide an incomplete view of aggregate evidence and can lead to misleading
conclusions about replication success. We propose new statistical metrics representing firstly
the probability that the original study’s point estimate would be at least as extreme as it actually
was, if in fact the original study were statistically consistent with the replications, and secondly
the estimated proportion of population effects agreeing in direction with the original study.Gener-
alized versions of the second metric enable consideration of only meaningfully strong population
effects that agree in direction, or alternatively that disagree in direction, with the original study.
These metrics apply when there are at least 10 replications (unless the heterogeneity estimate
τ̂ D0, in which case the metrics apply regardless of the number of replications). The first metric
assumes normal population effects but appears robust to violations in simulations; the second
is distribution free. We provide R packages (Replicate and MetaUtility).
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1. Introduction

Several social science disciplines have recently moved to assess replicability of the published lit-
erature empirically through systematic, third-party replications. Investigators conducting repli-
cations often seek to assess, firstly, how similar the results of the replication studies are to those
of the original studies, i.e. the extent to which the original studies are statistically consistent or
inconsistent with their replications (Anderson and Maxwell, 2016). Second, investigators often
aim to use replications to reassess the strength of evidence for the scientific effect under investi-
gation (Anderson and Maxwell, 2016), ideally while minimizing bias (e.g. through protocol and
analysis preregistration and a priori editorial approval (Simons et al., 2014) and while ensuring
high statistical power.

Novel designs for replication research now exist to address these objectives with more sophis-
tication than simple designs involving a single replication of an original study. Some high impact
experimental psychology journals now encourage projects in which multiple independent sites
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attempt to replicate a single, published original study by using a standardized experimental
protocol closely approximating the original and developed with input from the original authors
(Simons et al., 2014). Extensions (sometimes called ‘Many Labs’ projects) select multiple origi-
nal studies and subject each to a multisite replication (Ebersole et al., 2016; Klein et al., 2014),
and others have applied a similar approach to replicate new original research before its pub-
lication (Schweinsberg et al., 2016). We use the term ‘many-to-one design’ to refer generically
to any design in which an original study is replicated in multiple sites. Many-to-one replication
research is a nascent, but rapidly expanding, field: we are aware of at least 79 completed and 55
on-going many-to-one replication studies to date, all completed or initiated since 2014 and in
experimental psychology and experimental philosophy alone (completed, Alogna et al. (2014),
Bouwmeester et al. (2017), Cheung et al. (2016), Cova et al. (2018), Ebersole et al. (2016),
Eerland et al. (2016), Hagger et al. (2016), Klein et al. (2014), Schweinsberg et al. (2016) and
Wagenmakers et al. (2016); on going, Association for Psychological Science (2018), Ebersole
et al. (2018), Klein et al. (2018) and Schweinsberg and Uhlmann (2018)).

However, the adoption of many-to-one designs in the social sciences has outpaced the devel-
opment of corresponding statistical analyses. Existing work (Andrews and Kasy, 2019; Etz and
Vandekerckhove, 2016; Patil et al., 2016; Simonsohn, 2015; Verhagen and Wagenmakers, 2014)
has proposed analytic approaches for a single replication of a single study or designs in which
numerous original studies across a discipline or domain are each replicated once (here termed
‘one-to-one designs’), as in Open Science Collaboration (2015) and in Camerer et al. (2016).
Other potentially relevant work has not been adapted to the replication context (Gadbury and
Iyer, 2000; Gadbury et al., 2001; Heckman et al., 1997; Longford, 1999). However, many-to-one
designs pose unique statistical challenges and opportunities. Results of many-to-one replications
often suggest effect heterogeneity across sites despite use of standardized protocols (for exam-
ple, eight of 16 replications in Klein et al. (2014) suggested ‘statistically significant’ evidence
of heterogeneity), yet current analysis approaches do not adequately account for heterogeneity.
As we shall discuss, this can lead to misleading assessments of consistency between the original
study and the replications and of the strength of evidence for the effect under investigation.
Additionally, results of many-to-one designs often lead to unresolved debates regarding the
extent to which the original study ‘replicated’ or ‘did not replicate’, but these debates remain
highly speculative, perhaps partly because few directly relevant quantitative metrics are currently
available.

We therefore propose new statistical metrics that are specifically designed for many-to-one
designs. To assess statistical consistency, we provide a metric (Porig) representing the probability
that the effect estimate from the original study would be as extreme or more extreme than it
actually was if, in fact, the original study and the replications were statistically consistent in
the sense of being drawn from the same distribution. To assess the strength of evidence, we
provide a metric (P̂>0) estimating the proportion of population effects agreeing in direction
with the original effect estimate. Because replication effects that agree in direction with the
original, but are very weak, may in fact be considered insufficient evidence to support the
original effect, we also demonstrate how to generalize this metric to consider the proportion of
population effects that not only agree in direction with the original but are also stronger than a
user-chosen threshold of meaningfully strong size (P̂>q). Lastly, we also provide a counterpart
metric estimating the proportion of population effects in the opposite direction of the original
(P̂<qÆ ). In contrast with existing metrics, the metrics proposed account for all relevant sources of
statistical uncertainty in many-to-one replication designs, including heterogeneity (Kenny and
Judd, 2019), and they harness the specific strengths of many-to-one designs. These metrics are
mathematically straightforward but, to the best of our knowledge, have not yet been reported in
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Metrics for Multisite Replication Projects 1147

any published many-to-one replication. We provide R functions in the packages Replicate
and MetaUtility to conduct all the analyses proposed.

2. Applied example

As a running example, we shall consider one of several many-to-one replication attempts that
were conducted by Ebersole et al. (2016). Specifically, each of 21 independent laboratories
used a common protocol to replicate a classical psychology experiment (Monin and Miller’s
(2001) experiment 1) on ‘moral credentialling’ theory, which proposes that people who are
given an initial opportunity to demonstrate that they are not prejudiced (and thus establish
‘moral credentials’) are more likely to display apparently prejudiced attitudes in subsequent
tasks (having licensed themselves to do so because of their previously established credentials). In
the replicated experiment, the initial task required subjects to agree or disagree with potentially
sexist statements. In the initial task, subjects were randomized to a credentialling condition in
which the statements described ‘most women’ (e.g. ‘Most women need a man to protect them’)
or to a control condition, in which the same statements described only ‘some women’. Thus,
credentialling statements were designed to induce higher disagreement than control statements,
allowing subjects in the former condition to establish themselves more clearly as non-sexists.
The dependent variable was subjects’ degree of preference for male candidates in an imagined
hiring scenario. As predicted, subjects in the credentialling condition more strongly preferred
to hire male candidates than did control subjects (corresponding to an effect size of r = 0:21
on Pearson’s correlation scale (95% confidence interval (CI) 0.09, 0.32; p = 7 × 10−4). Monin
and Miller (2001) also reported an unexpected interaction of credentialling condition with the
subject’s sex, and Ebersole et al. (2016) attempted to replicate both the main effect and the
interaction. For brevity, we focus on the main effect only.

3. Existing metrics

We first review metrics that are commonly reported in many-to-one designs as well as those
developed for other designs but that are frequently reported in many-to-one designs. First, nearly
all many-to-one designs report a pooled estimate of the effect size in the replications. The pooled
estimate is usually estimated by meta-analysing effect sizes from the replications or by fitting
a mixed model to individual subject data. For example, fitting a random-effects meta-analysis
model to replication studies of Ebersole et al. (2016) on moral credentialling estimates an average
effect size of 0.07 (95% CI 0.02, 0.12) on Pearson’s correlation scale; both the replicators and the
lead author of the original study (Monin, 2016) interpreted this finding as a successful replication
supporting moral credentialling. Regardless of modelling approach, this metric estimates the
average population effect size across the replications. This is adequate if replications exhibit
little heterogeneity but provides an incomplete picture in the presence of heterogeneity across
replication studies. Such heterogeneity may occur, for example, if replication studies differ with
respect to subjects’ demographic characteristics (e.g. age, sex, race or geographic region) or the
setting in which the study is conducted (e.g. time of day or physical setting). As the proposed
metrics will formalize, the forest plot in Fig. 1 suggests heuristically that, although a group
of replication point estimates were clustered around the pooled point estimate, several point
estimates were in fact in the direction opposite the original, and several were even larger than
the original.

As discussed elsewhere in the context of meta-analyses rather than replications (Mathur
and VanderWeele, 2019), under moderate or substantial heterogeneity, a pooled estimate near
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Fig. 1. Estimated correlation in each of the replications of Ebersole et al. (2016) ( ), ordered by the
calibrated estimate of the replication’s population effect size ( ) discussed in Section 4.2 (circle areas are
proportional to the replication’s relative inverse variance weight in the meta-analysis; error bars represent
95% CIs): , meta-analytic pooled estimate across replications; , estimate in the original study of Monin
and Miller (2001); , 5% weight; , 10% weight; , 15% weight

the null can belie the existence of strong effects in some replication settings. Thus because of
heterogeneity, a many-to-one replication design whose pooled estimate appears not to support
the hypothesized effect may nevertheless provide evidence of meaningfully strong effects in
favour of the original hypothesis in some contexts (e.g. locations, subject demographics and
variations in protocol administration). Conversely, if the pooled estimate is in the same direction
as the original estimate but is smaller, we cannot directly discern whether the population effects
are never as large as originally reported (and perhaps are too small to warrant scientific interest)
or whether they may, in fact, be as large as or larger than the original estimate in some settings.
For these reasons, we shall recommend supplementing the pooled point estimate with new
metrics that additionally characterize heterogeneity.

A widespread metric of statistical consistency assesses whether the replication study obtains
a ‘statistically significant’ p-value and an effect estimate in the same direction as in the original
study (assuming that the original study itself obtained a ‘significant’ p-value). This ‘significance
agreement’ metric is widely reported in single replications (Anderson and Maxwell, 2016), in
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Metrics for Multisite Replication Projects 1149

one-to-one designs (Camerer et al., 2016; Open Science Collaboration, 2015) and in many-to-
one designs. However, as others have noted (Patil et al., 2016; Simonsohn, 2015), significance
agreement is challenging to interpret because it is a function not only of the nominal α-level
(e.g. 0.05), but also of power in both the original and the replication study. Thus, the expected
probability of significance agreement may be quite low (Andrews and Kasy, 2019; Patil et al.,
2016), though it can be simulated (Patil et al., 2016) or derived (on-line supplement) for a
given original and replication study and then compared with the observed probability. In our
running example regarding moral credentialling, 24% of replications (five of 21) obtained results
agreeing in statistical significance and direction of effect with the original, which appears much
lower than the 62% than we would expect theoretically (based on the original estimate and
its standard error, as well as the standard error of each replication). Assessing significance
agreement across replication studies is a direct analogue to the outdated practice of synthesizing
evidence across studies in a systematic review by counting the number of studies obtaining
‘statistically significant’ results. The latter ‘vote counting’ method has extremely poor power
and, surprisingly, in some settings the power can decrease as the number of synthesized studies
increases (Hedges and Olkin, 1980).

A variety of more interpretable metrics have been developed for one-to-one replications, and
some have also been reported in many-to-one designs. Patil et al. (2016) proposed to use the
original study to construct a prediction interval representing a plausible range for the effect
estimate in the replication study, assuming that the replication and the original study are gener-
ated from the same distribution (i.e. they are statistically ‘consistent’). If indeed the two studies
are generated from the same distribution, then regardless of power in either study there is, by
construction, a 95% probability that the replication effect estimate will fall inside the predic-
tion interval. Simonsohn (2015) proposed a hypothesis test of the replication estimate versus
a non-zero null value chosen as the smallest effect size that the original study would have had
an estimated 33% power to detect; this approach can help to assess whether the original study
was adequately powered to detect the effect studied but does not directly assess consistency
between the original study and the replications nor strength of evidence in the replications
themselves. Andrews and Kasy (2019) developed a sophisticated, general statistical model for
median-unbiased effect size estimation in one-to-one replication designs such as Open Science
Collaboration (2015). Several researchers (e.g. Etz and Vandekerckhove (2016) and Verhagen
and Wagenmakers (2014)) have recommended using Bayes factors to quantify evidence for and
against the null hypothesis.

In a many-to-one design, some of these metrics can be applied individually to each replication
study or to the pooled estimate. The former analysis can be informative but does not aggregate
evidence and statistical power across all replications. The latter analysis is subject to the same
limitations as the pooled estimate itself, namely that it summarizes a potentially heterogeneous
distribution of replication effects by only its mean. In fact, analyses that fail to account for
heterogeneity can underestimate (or potentially overestimate) consistency when there is in fact
heterogeneity, leading to conclusions that can be unduly unfavourable (or potentially unduly
favourable) to the original study, as proven in the on-line supplement.

4. Proposed new analyses

As discussed above, few statistical methods have been developed specifically for many-to-one
designs, and those that were developed for other replication designs have limitations when ap-
plied to many-to-one designs, particularly in the presence of heterogeneous effects. We therefore
propose new metrics to address central objectives of replication research while accounting for
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1150 M. B. Mathur and T. J. VanderWeele

all relevant sources of statistical uncertainty, namely statistical error in the original, statistical
error in the replication, and heterogeneity. All proposed analyses can be conducted by using the
R packages Replicate and MetaUtility, which are described in the on-line supplement.

4.1. Consistency of original with replications (Porig)
Our first proposed metric assesses statistical consistency. Rather than assuming that the repli-
cations and the original study measure exactly the same underlying effect size—an assumption
that is implicit in most metrics for single replications—we instead assume that they measure
potentially heterogeneous, normally distributed effects. We shall then say that the original study
is ‘consistent’ with the replications if it is generated from the same underlying distribution as the
replications, i.e. its population effect size comes from the same distribution as those of the repli-
cations. This measure directly accounts for heterogeneity because it compares the original study
with the heterogeneous distribution of population effects underlying the replications, rather than
to each replication point estimate individually. Then, we define the first proposed metric, called
Porig, as the probability that, if indeed the original is consistent with the replications in this
sense, its estimate would be as extreme or more extreme than it actually was. A small value of
Porig would indicate strong evidence that the original study is inconsistent with the replications,
whereas a large value would suggest relatively good consistency. In practice, if the original study
is highly inconsistent with the replications, even accounting for heterogeneity, then we might
consider it an anomaly. Future meta-analyses of the published literature might then present
analyses both including and excluding such potentially anomalous studies. Additionally, oth-
ers describe meta-analytically pooling results of an original study with those of a replication
(Anderson and Maxwell, 2016; Open Science Collaboration, 2015); high inconsistency would
suggest interpreting such analyses with greater caution.

To estimate Porig, we first define θ̂orig and ŜEorig as the point estimate and standard error
estimate in the original study, μ̂ and ŜEμ̂ as estimates of the average population effect size in
the replications and its standard error respectively and τ̂2 as an estimate of the variance of the
population effect sizes across replications. The effect sizes should be estimated on a scale for
which the normality assumption is plausible (e.g. Fisher’s z-scale), though simulation results
suggest robustness to violations of this assumption (Section 6). In practice, μ̂ and τ̂2 are most
commonly estimated by using the pooled estimate and heterogeneity estimate from a random-
effects meta-analysis of the replication sites’ estimates. Alternatively, they could be estimated
by fitting a mixed model to the individual observations themselves (which is also known as an
‘individual patient data meta-analysis’ (Stewart et al., 2012)); both approaches are discussed
further in the on-line supplement. In the main text, for simplicity, we illustrate the common
meta-analytic approach, but all analyses can be conducted by using any unbiased estimates μ̂
and τ̂2 arising from a model with the given distributional assumptions (supplement).

Then, if the original study is in fact consistent with the replications, the probability that its
estimate would be as extreme as we observe it to be is approximately

Porig =2

[
1−Φ

{
|θ̂orig − μ̂|

√
.τ̂2 + ŜE

2
orig + ŜE

2
μ̂/

}]
: .4:1/

For example, we used the R package metafor (Viechtbauer, 2010) to fit a random-effects
meta-analysis to the site level point estimates of Ebersole et al. (2016) on Fisher’s z-scale via
restricted maximum likelihood with inverse variance weights. We thus estimated on the z-scale
μ̂=0:07, ŜEμ̂ =0:02 and τ̂2 =0:003. We computed θ̂orig =0:21 and ŜEorig =0:06 for the original

 1467985x, 2020, 3, D
ow

nloaded from
 https://rss.onlinelibrary.w

iley.com
/doi/10.1111/rssa.12572 by U

niversity O
f Padova C

enter D
i, W

iley O
nline L

ibrary on [28/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Filippo Gambarota
Highlight

Filippo Gambarota
Highlight



Metrics for Multisite Replication Projects 1151

study by converting the reported η2-scale to Fisher’s z (Lakens, 2013). Then, using equation
(4.1), we estimated that, if the population effect in the original study indeed arose from the
same distribution from which the replications were drawn, there would be a 10% chance that
the original effect estimate would be as extreme as or more extreme than the observed 0.21. We
can interpret this fairly low, but non-negligible, probability as being only weakly suggestive of
inconsistency. On the basis of a visual assessment and the Shapiro–Wilk test (Shapiro and Wilk,
1965), the normality assumption did not appear to be violated, as described below in Section 5.

In contrast, previously discussed metrics indicating a low proportion of replications agreeing
in statistical significance (24% versus 62% expected) and falling within the original prediction
interval (76% versus 95% expected) might appear to suggest inconsistency more strongly. These
relatively more pessimistic conclusions (compared with the conclusions that we might draw from
Porig) reflect these previous metrics’ failure to account for heterogeneity in the effects across
replications. To illustrate quantitatively, we can recompute Porig, but this time setting τ̂2 = 0
to assume no heterogeneity in the effects across replications. We then obtain a probability of
only 4%. This is considerably lower than the 10% figure that is obtained by properly accounting
for heterogeneity: a heterogeneous distribution of effects in the replications typically allows a
higher chance that any given study would measure a very large or very small point estimate (as
shown mathematically in the on-line supplement).

4.2. Proportion of population effects agreeing in direction with the original (P̂ >0)
To address a second central objective of replication—reassessing the strength of evidence for
the scientific effect of interest—we propose a metric (P̂>0) to supplement the usual pooled ef-
fect estimate and its CI. Unlike these existing metrics, which characterize only the mean of the
distribution of population effects in the replications, P̂>0 characterizes both the mean and the
heterogeneity of this distribution, and it addresses effect size rather than statistical significance.
Specifically, P̂>0 represents the proportion of population effects, among the potentially hetero-
geneous population from which the replications are a sample, that agree in direction with the
original. That is, any non-zero population effect agreeing in direction can be interpreted as a
‘real’ effect supporting the original study’s theory (albeit potentially of a smaller effect size). This
metric provides additional information beyond that provided by Porig. That is, Porig helps to
assess whether the replications were ‘successful’ in the sense that their results are similar to those
of the original study. In contrast, P̂>0 helps to assess whether the replications were successful in
the sense of providing evidence for the effect under investigation, regardless of the results of the
original study. We return to this difference in interpretation in analysing the applied example
below as well as in the conclusion in Section 8.

To estimate P̂>0, it is not sufficient simply to compute the observed proportion of replication
estimates agreeing in direction with the original; such an approach would fail to account for
statistical error in the replication estimates. That is, the challenge is to use the distribution of the
replication estimates (which has variability due to both heterogeneity and statistical error) to
estimate the distribution of population effects (which has variability due only to heterogeneity).
As in the context of meta-analysis rather than replication (Mathur and VanderWeele, 2020),
the sample proportion can instead be estimated by using ‘calibrated’ estimates that have been
appropriately shrunk to correct the point estimates’ overdispersion due to statistical error (Wang
and Lee, 2019). Let θ̂rep,i and ŜErep,i respectively denote the point estimate and standard error
estimate in the ith replication study, and, as before, let μ̂ and τ̂2 represent estimates of the mean
and variance of the population effects in the replications. Then the calibrated estimate of the
population effect in the ith replication study is (Wang and Lee (2019), equation (4.1))
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1152 M. B. Mathur and T. J. VanderWeele

θ̃rep,i = μ̂+ .θ̂rep,i − μ̂/

√(
τ̂2

τ̂2 + ŜE
2
rep,i

)
:

Intuitively, the calibrated estimate θ̃rep,i shrinks the point estimate θ̂rep,i towards the estimated
mean μ̂ with a degree of shrinkage that is inversely proportional to the study’s precision: rela-
tively imprecise estimates θ̂rep,i (i.e. those with large ŜErep,i) receive strong shrinkage towards
μ̂, whereas relatively precise estimates receive less shrinkage and remain closer to their original
values. (Readers who are familiar with empirical Bayes estimation will note that the coefficient√{τ̂2=.τ̂2 + ŜE

2
rep,i/} imposes less shrinkage than the coefficient τ̂2=.τ̂2 + ŜE

2
rep,i/ that would

be used in the empirical Bayes estimate. By construction, the latter estimates minimize com-
ponentwise losses but produce calibrated estimates that are underdispersed compared with the
population effects (Louis, 1984). The present coefficient

√{τ̂2=.τ̂2 + ŜE
2
rep,i/} minimizes the

distance between the empirical cumulative distribution functions of the calibrated estimates
and of the population effects (Louis, 1984), which is the relevant loss function for estimation of
P̂>q and P̂<qÆ .)

One can then estimate P̂>0 as the sample proportion of calibrated estimates above 0, i.e.
letting k denote the number of replication studies,

P̂>0 = 1
k

k∑
i=1

1.θ̃rep,i > 0/

(Mathur and VanderWeele, 2020).
For inference, one can bootstrap pairs of .θ̂rep,i, ŜErep,i/ by drawing with replacement from

the original sample and estimating in turn μ̂ and τ̂2, θ̃rep,i for each replication, and finally P̂>0
(Mathur and VanderWeele, 2020). A bias-corrected and accelerated CI (Carpenter and Bithell,
2000; Efron, 1987) can then be constructed from the bootstrapped values of P̂>q.

4.3. Proportion of meaningfully strong population effects (P̂ >q and P̂ <qÆ )
The aforementioned P̂>0 treats all effects that agree in direction with the original estimate,
even those that are very close to the null, as evidence in favour of the scientific effect under
investigation. This is generous towards the original study and therefore might serve as a useful
default analysis. Alternatively, as a more stringent measure of evidence strength, it can also
be useful to consider a generalized metric (P̂>q) representing the proportion of effects that
are stronger than a non-null threshold, q. This approach is similar to equivalence testing and
minimal effects testing, which compare a point estimate with null values other than 0 (Lakens
et al., 2018). An extensive interdisciplinary literature has provided recommendations on how to
choose thresholds for meaningfully strong effect sizes, which we summarize briefly in the on-
line supplement. For example, suppose that, through comparison with well-established effects
on similar dependent variables (supplement), we select a threshold at an effect size of Cohen’s
d =0:20 or, equivalently, an approximate correlation of r =0:10 (Cohen, 1977). If P̂>q is large
(e.g. 85%), this suggests that, when drawing from the population distribution of effect sizes
underlying the replications, a high proportion of population effects are sufficiently large to
warrant scientific interest (e.g. larger than Cohen’s d =0:20). We might therefore conclude that
the replications provide strong evidence that the scientific effect of interest is meaningfully strong
in many settings. In contrast, if P̂>q is small, we might instead conclude that the replications
fail to support meaningfully strong effects in most contexts.

Conversely, it can also be useful to consider effects in the direction opposite to the original
estimate by using a second threshold-based metric, P̂<qÆ . That is, one could select a second
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Metrics for Multisite Replication Projects 1153

threshold representing a meaningfully strong effect size in the opposite direction (e.g. Cohen’s
d = −0:20) and estimating the proportion of population effects below this threshold. If the
pooled estimate is fairly close to the null or if heterogeneity is substantial, this probability may
be non-neglible, suggesting that the experimental manipulation may (perhaps unexpectedly) in-
duce meaningful effects in the opposite direction in some replication settings. Such a finding may
help to stimulate hypotheses regarding important moderators or boundary conditions on the
effect of interest. Additionally, effects in the opposite direction from theoretical predictions may
actively support competing theories. Indeed, when evaluating competing theories, researchers
sometimes deliberately design experimental manipulations that are expected to induce oppos-
ing effects under each candidate theory. Returning to moral credentialling, the theory under
investigation predicts that credentialling opportunities would increase subsequent attitudes that
are consistent with prejudice; however, other theories suggest that credentialling opportunities
might sometimes decrease such attitudes by prompting self-consistency or by priming personal
values that discourage prejudice (Monin and Miller, 2001). Using P̂<qÆ to characterize effects
in the opposite direction explicitly (rather than simply allowing them to dilute the pooled esti-
mate without additional consideration) may help to identify situations, possibly supported by
alternative theories, in which such competing effects occur.

These threshold-based metrics are particularly informative when the pooled estimate in the
replications is smaller than that of the original study, as is often the case (e.g. Ebersole et al.
(2016)). The proportion of population effects above a threshold (P̂>q) may then help to identify
whether

(a) the population effects are closely clustered around a small average effect size, providing
little evidence for meaningfully strong effects versus

(b) the population effects are quite variable around a small average effect size, such that there
is in fact compelling evidence that meaningfully strong effects occur in some settings (and
thus suggesting the importance of examining possible moderators).

For example, suppose that the original study estimates an effect size of d = 0:85, but the repli-
cations estimate a much smaller pooled effect size. Exclusive focus on the existing metrics may
then mislead us into considering the replication effort to have succeeded completely (if the
pooled point estimate is also ‘statistically significant’) or to have failed completely (if the pooled
point estimate is not ‘statistically significant’). However, if we additionally choose a threshold
of scientific importance at, for example, d =0:20 and estimate a reasonably high percentage (e.g.
75%) of population effects exceeding this threshold, then we might instead consider the repli-
cations to provide moderately strong evidence for meaningful effect sizes in some replication
settings, warranting an assessment of possible moderators. In contrast, if we instead find that
only, for example, 8% of population effects exceed d = 0:20, then we might instead conclude
that the replications provide little evidence to support meaningfully strong effect sizes (even if
the pooled point estimate is ‘statistically significant’). Similarly to P̂>0, these metrics can be
estimated by using the appropriate sample proportions of calibrated estimates, i.e. letting q be
a chosen threshold defining a meaningfully strong effect size,

P̂>q = 1
k

k∑
i=1

1.θ̃rep,i >q/

and

P̂<qÆ = 1
k

k∑
i=1

1.θ̃rep,i <qÅ/
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1154 M. B. Mathur and T. J. VanderWeele

(Mathur and VanderWeele, 2020). If the point estimates have been transformed for analysis (e.g.
from Pearson’s r- to Fisher’s z-scale), the calibrated estimates will also be on the transformed
scale, and the threshold q should therefore be chosen on the transformed scale as well. CIs can
again be obtained via bias-corrected and accelerated bootstrapping.

4.4. Proportion of replication effects supporting moral credentialling
In the moral credentialling example, the original study had a point estimate of 0.21 (95% CI
0.09, 0.32) on the Pearson correlation scale, whereas our meta-analysis of the replications of
Ebersole et al. (2016) had a pooled estimate of 0.07 (95% CI 0.02, 0.12) with estimated hetero-
geneity τ̂2 =0:003. As discussed previously, the ‘statistically significant’ result in the replications
might appear to suggest that the replication effort was successful. But does the small pooled
estimate in the replications, despite its ‘statistical significance’, correspond to a high propor-
tion of replication effects supporting credentialling theory? First, we can use P̂>0 to estimate
the proportion of population effects above 0 (91% with 95% CI 57%, 100%). Alternatively, to
choose a threshold representing a minimum effect size that is meaningfully strong, we might
consider the effect sizes of well-established interventions on the same outcome measure, namely
prejudice (see the on-line supplement for more details on choosing a threshold). For example, a
meta-analysis of the enormous literature on intergroup contact and prejudice obtained a point
estimate of r =−0:21 among all study designs and r =−0:33 among experimental studies (Petti-
grew and Tropp, 2008). We might treat experimental intergroup contact interventions as a ‘gold
standard’ representing the effect sizes on prejudice that are achievable through purposefully
designed interventions. In contrast, the proposed moral credentialling effect is not a designed
intervention on prejudice but rather a specific, potentially more subtle, cognitive mechanism
of prejudice. Thus, to select an effect size threshold for moral credentialling, we might some-
what reduce the magnitude of the gold standard interventions to, for example, |r|=0:10, which
corresponds to Fisher’s z≈0:10 on the analysis scale.

Then we can estimate the sample proportion of calibrated estimates above 0.10 as

P̂>q = 1
k

k∑
i=1

1.θ̃rep,i > 0:10/:

This analysis suggests that a minority of effects (14% with 95% CI 0%, 43%) surpass r = 0:10.
We can also estimate P̂<qÆ , i.e. the proportion of meaningfully strong population effects in the
direction opposite to Monin and Miller’s (2001) original findings. We might choose a conser-
vative second threshold at, for example, r = 0 (z = 0 on the analysis scale) and use the sample
proportion of calibrated estimates below 0,

1
k

k∑
i=1

1.θ̃rep,i < 0/,

to estimate that few effects (14% with 95% CI 0%, 43%) are negative. (For this particular example,
the point estimates and CIs are the same for P̂>0:10 and P̂<0 because, in each case, exactly three
(14%) of the calibrated estimates were more extreme than the chosen threshold, as can be seen
in Fig. 1.)

Ultimately, although these replications produce a ‘statistically significant’ point estimate in
the same direction as the original study’s estimate, we might nevertheless caution that they pro-
vide little evidence for effect sizes of strength comparable with that of the original estimate across
replication settings. In the distribution of population effects, there is a high proportion of non-
zero effects in the direction of the original estimate, but most of these effects are considerably
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Metrics for Multisite Replication Projects 1155

smaller than the original estimate. Considering these results along with the previously discussed
consistency metric (Porig = 10%), we might say, overall, that the moral credentialling main ef-
fect ‘replicated’ in the sense that there is not compelling evidence for inconsistency between the
original study and replications (once we account for heterogeneity), yet strength of evidence for
meaningfully strong effect sizes of moral credentialling is considerably weaker than suggested by
the original study. These complementary findings further illustrate the conceptual distinction be-
tween statistical consistency and strength of evidence for meaningfully strong effects of interest.

5. Reporting recommendations and statistical diagnostics

5.1. Calibrated forest plot
To supplement the statistical metrics proposed, we suggest creating a forest plot displaying the
point estimates and 95% CIs for each replication study, for all replication studies combined and
for the original study (e.g. Fig. 1). It may be informative additionally to indicate the calibrated
estimate θ̃rep,i in each replication study (e.g. the crosses in Fig. 1) and to order the replication
studies by their calibrated estimates. The calibrated estimate in each replication can serve as an
estimate of that replication study’s population effect size on accounting for the study’s precision
along with information that is provided by the other replications. Taken together, the calibrated
estimates can provide a heuristic sense of the distribution and variability of the population effect
sizes themselves, rather than of the potentially noisy point estimates. Furthermore, if there
are sites with apparently extreme point estimates or calibrated estimates, one might conduct
sensitivity analyses in which the metrics proposed, as well as the diagnostics that are described
below, are recalculated after excluding these potential outliers.

5.2. Diagnostics for distributional assumptions
Our proposed metrics assume that the point estimates are normally distributed around their cor-
responding population effects, which is reasonable when the replication studies have reasonably
large sample sizes and when their estimates are transformed to an appropriate scale for analysis
(Sutton et al., 2000). Further, the metric Porig assumes that the population effect sizes themselves
in the replication studies are normally distributed, though the metrics P̂>0, P̂>q and P̂<qÆ do not
use this assumption. In most many-to-one designs, which use mixed modelling or parametric
random-effects meta-analysis to estimate the pooled effect, this assumption is already implicit.
Nevertheless, we recommend assessing its plausibility as follows. If the normality assumption
holds, then the standardized estimates in the replication studies, .θ̂rep,i − μ̂/=

√
.τ̂2 + ŜE

2
rep,i/, will

be approximately normal (Hardy and Thompson, 1998). Thus, one could test for normality of
the standardized estimates via the Shapiro–Francia or Shapiro–Wilk test, though power may
be limited when the number of replication studies is small (Shapiro and Francia, 1972; Shapiro
and Wilk, 1965).

Additionally, sensitivity analyses could be conducted by meta-analysing the replication study
estimates under distribution-free approaches (Fisher and Tipton, 2015; Hedges et al., 2010) or
under more flexible distributional assumptions (see Higgins et al. (2009) for a review). If the
robustly estimated μ̂ and τ̂2 differ substantially from those obtained through parametric meta-
analysis, this suggests that the normality assumption may be violated. Because assessment of
normality and accurate heterogeneity estimation are challenging with small sample sizes (Hardy
and Thompson, 1998; Veroniki et al., 2016), these proposed replication metrics should generally
be applied only when there are at least 10 replication studies (unless there is no heterogeneity).
To the best of our knowledge, this was true in each of the 79 completed many-to-one designs that
were discussed in Section 1. An exception to this rule of thumb is when there is no heterogeneity,
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1156 M. B. Mathur and T. J. VanderWeele

as discussed in the following section. Additionally, simulation results suggested that Porig is in
fact quite robust to violations of the normality assumption (Section 6).

5.3. Diagnostics for uncertainty in Porig
Additionally, estimation uncertainty in τ̂2 may be considerable when the number of replications
is small (Veroniki et al., 2016); it is then possible that many values of τ2 are plausible given the
data, resulting in considerable uncertainty about Porig itself. Three types of diagnostic plots may
help to identify such situations (see Rubin (1981)). First, one could plot the marginal likelihood
of τ2 for a range of hypothetical values τ2

Å, including values both smaller than and larger than
the actual point estimate τ̂2. In practice, to display the likelihood on an interpretable scale, we
suggest plotting the marginal likelihood ratio of the hypothetical values τ2

Å against the actual
estimate τ̂2 (Figs 2(a) and 2(b)), e.g. using the R function Replicate::t2 lkl. Ideally,
the peak of the likelihood ratio curve would span a narrow range of values around the actual
estimate τ̂2, declining sharply on either side of τ̂2; this would indicate relatively good certainty
about the true value of τ2. If instead the likelihood ratio spans a wide range of values, remaining
close to 1 even for values τ2

Å that are several fold smaller or larger than the actual estimate τ̂2,
this suggests that there may be considerable uncertainty in Porig itself.

For example, Figs 2(a) and 2(b) display this likelihood ratio for all 21 moral credentialling
replications and for only the first three replications respectively. Because the 21 replications
provide more information about the amount of heterogeneity than do only the first three, the
likelihood curve is much more peaked in Fig. 2(a) than in Fig. 2(b) and, in Fig. 2(b), a wide range
of heterogeneity values appear plausible given the very limited data. A plot similar to Fig. 2(b)
would suggest that the replication data might not be sufficiently informative to assess consistency
via Porig. As second and third diagnostic plots, one could similarly plot a range of values τ2

Å
against the ratio μ̂=τ2

Å, which plays a central role in the calculation of Porig, and also against
Porig itself (Figs 2(c) and 2(d)). These plots could help to indicate how much Porig would change
if a different heterogeneity estimate had been obtained. If, for example, there are hypothetical
values τ2

Å for which the likelihood ratio is high (i.e. close to 1 based on plots such as Figs 2(a)
and 2(b)) but for which μ̂=τ2

Å and Porig differ substantially from their actual estimates, this again
suggests that there may be much uncertainty associated with Porig given the replication data.

5.4. Diagnostics for bias in P̂ >q
As discussed in Section 6 below, the metric P̂>q and the related proportion metrics can poten-
tially be biased if, for example, there is low heterogeneity, the true proportion (i.e. E[P̂>q]) is close
to 0 or 1, or if there are limited replication data. A useful diagnostic for potential bias is the mean
of the bootstrapped estimates that are used to construct the CI. The difference between the mean
of the bootstrap estimates and the sample estimate P̂>q is an estimate of the bias of P̂>q itself
(Davison and Hinkley (1997), section 2.2.1), so caution is warranted if the mean of the bootstrap
estimates differs considerably from P̂>q. The R function MetaUtility::prop stronger
automatically returns the mean of the bootstrap estimates for this purpose.

6. Simulation study

6.1. Methods
We conducted a simulation study with two objectives. First, we assessed the type I error and
power of Porig when it is treated as a level α=0:05 test of the hypothesis that the population effect
size in the original study is consistent with the replication studies, i.e. letting μ and τ2 denote
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Fig. 2. Diagnostic plots (see Rubin (1981)) relating hypothetical heterogeneity values τ2
* to the marginal

likelihood ratio of the hypothetical τ2
* versus (a), (b) the actual restricted maximum likelihood estimate τ̂2,

(c) to the ratio μ̂=τ2
* and (d) to the resulting Porig: (a) (c) and (d) were created by using the applied example

data; (b) was created by using only the first three of the moral credentialling replications and serves as a
comparison for (a); the upper x -axis is the ratio of the hypothetical value τ2

* to the actual estimate τ̂2 ( , actual
estimate τ̂2)

the unknown true mean and variance of the distribution of effects underlying the replications,
we tested H0 : θorig ∼ N.μ, τ2/ versus HA : θorig �∼ N.μ, τ2/, rejecting H0 when Porig < 0:05. (As
described in Section 8, in practice, we recommend reporting Porig as a continuous measure
rather than relative to a dichotomous α-threshold. We use the hypothesis testing framework for
the simulation study merely as a means of benchmarking the metric’s performance.) Second, we
assessed the bias, root-mean-square error RMSE and CI coverage of P̂>q.
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1158 M. B. Mathur and T. J. VanderWeele

To simulate data sets, we fixed the mean of the population effects to μ= 0:50 on the mean
difference scale while varying the number of replications, k, between 5 and 25, the heterogeneity
τ2 ∈{0:002, 0:01, 0:25} and the sample size in each individual replication Nrep ∈{50, 300}. Rele-
vant to the estimation of Porig, we varied the sample size in the original study Norig ∈{30, 50, 200}
and the difference Δ between the population effect size in the original study and the true mean in
the replications (Δ∈{0, 0:20, 0:50, 1:0}). Relevant to the estimation of P̂>q, we chose different
thresholds q so that the expectation of P̂>q varied in {0:05, 0:10, 0:50}. In each scenario, we
calculated P̂>q by using two recommended heterogeneity estimators (Veroniki et al., 2016): the
restricted maximum likelihood estimator (Raudenbush and Bryk, 1985) and the estimator of
Paule and Mandel (1982).

For each of k replications, we generated a population effect, θrep,i, on the raw mean difference
scale from a normal distribution, a shifted exponential distribution, a scaled and shifted t-
distribution with 3 degrees of freedom or a bimodal uniform mixture distribution. For all
distributions, we chose the parameters to provide the desired mean of μ=0:50 and heterogeneity
τ2. Fig. S1 in the on-line supplement shows population effects simulated from each of the four
distributions for each value of τ2. We also generated a population effect for the original study,
θorig, from a comparable distribution but with mean μ+Δ. Thus, the null hypothesis regarding
Porig held when Δ=0. For each replication and for the original study, we then simulated subject
level data for a control group with mean 0 and for an intervention group with mean θrep,i or
θorig respectively; each group was of size Nrep=2 or Norig=2 respectively and had a standard
deviation of 1. Thus, the true within-study standard errors of the estimated mean differences in
each replication and in the original study were ŜErep,i =√

.4=Nrep/ and ŜEorig =√
.4=Norig/. We

ran scenarios representing all 4320 possible combinations of the varying parameters, using 5000
bootstrap iterates to estimate the CI for P̂>q. We ran at least 1000 simulation iterates per scenario.

6.2. Results
Comprehensive simulation results for all 4320 scenarios are presented in Figs S2–S8 in the
on-line supplement and can also be explored interactively via the website https://mmathur.
shinyapps.io/RRR sims/ or downloaded as a data set from https://osf.io/ufjg4/.
The two heterogeneity estimators performed almost identically, so we report here only the
results by using the restricted maximum likelihood estimator. Across all scenarios with k � 10
(supplement), including both normal and non-normal distributions, the average type I error was
5%. The maximum type I error rate was 11%, which occurred in scenarios with high heterogeneity
as well as few or low powered replications (e.g. Fig. S2). When heterogeneity was low to moderate
(τ2 = 0:001 or τ2 = 0:01), the maximum type I error rate was 7% across all sample sizes and
numbers of replications and was 6% when considering only normally distributed population
effects. Alternatively, when there was a fairly large number (k =25) of large replication studies
(Nrep =300), the maximum type I error rate was 7% across all values of heterogeneity and was
6% when considering only normally distributed population effects. These results suggest that,
when k � 10, Porig is quite robust to non-normal population effects, but that results should be
interpreted cautiously if both

(a) the amount of replication data is limited (because of small sample sizes in the replication
studies or a small number of replication studies) and

(b) heterogeneity appears to be high.

Table 1 summarizes the results for Porig for scenarios with k �10, since we do not recommend
using these methods for k< 10 (unless there is no heterogeneity). For legibility, Table 1 displays
results only for scenarios with Norig =50 and Nrep =300. (Note that the means and maxima that
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Metrics for Multisite Replication Projects 1159

Table 1. Type I error (ΔD0 rows) and power (Δ>0 rows) of Porig for scenarios
with k �10†

Distribution τ2 Δ Mean rejection Maximum rejection
rate rate

Normal 0.002 0.00 0.04 0.05
Normal 0.002 0.20 0.09 0.09
Normal 0.002 0.50 0.34 0.34
Normal 0.002 1.00 0.89 0.90
Normal 0.010 0.00 0.05 0.05
Normal 0.010 0.20 0.09 0.09
Normal 0.010 0.50 0.33 0.33
Normal 0.010 1.00 0.86 0.87
Normal 0.250 0.00 0.06 0.07
Normal 0.250 0.20 0.07 0.08
Normal 0.250 0.50 0.13 0.15
Normal 0.250 1.00 0.37 0.39
Exponential 0.002 0.00 0.05 0.05
Exponential 0.002 0.20 0.09 0.10
Exponential 0.002 0.50 0.34 0.35
Exponential 0.002 1.00 0.89 0.90
Exponential 0.010 0.00 0.05 0.05
Exponential 0.010 0.20 0.09 0.09
Exponential 0.010 0.50 0.31 0.32
Exponential 0.010 1.00 0.85 0.86
Exponential 0.250 0.00 0.06 0.07
Exponential 0.250 0.20 0.08 0.09
Exponential 0.250 0.50 0.16 0.18
Exponential 0.250 1.00 0.37 0.38
t 0.002 0.00 0.05 0.05
t 0.002 0.20 0.09 0.10
t 0.002 0.50 0.33 0.34
t 0.002 1.00 0.88 0.89
t 0.010 0.00 0.05 0.06
t 0.010 0.20 0.09 0.09
t 0.010 0.50 0.28 0.30
t 0.010 1.00 0.80 0.81
t 0.250 0.00 0.07 0.08
t 0.250 0.20 0.08 0.09
t 0.250 0.50 0.11 0.12
t 0.250 1.00 0.23 0.24
Uniform mixture 0.002 0.00 0.04 0.04
Uniform mixture 0.002 0.20 0.09 0.09
Uniform mixture 0.002 0.50 0.34 0.35
Uniform mixture 0.002 1.00 0.89 0.89
Uniform mixture 0.010 0.00 0.05 0.05
Uniform mixture 0.010 0.20 0.09 0.09
Uniform mixture 0.010 0.50 0.32 0.34
Uniform mixture 0.010 1.00 0.86 0.87
Uniform mixture 0.250 0.00 0.03 0.04
Uniform mixture 0.250 0.20 0.05 0.06
Uniform mixture 0.250 0.50 0.14 0.15
Uniform mixture 0.250 1.00 0.40 0.42

†For legibility, results are shown only for scenarios with Norig =50 and Nrep =300,
and statistics aggregate over the other manipulated simulation parameters that are
not listed in the column headings.
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1160 M. B. Mathur and T. J. VanderWeele

Table 2 Bias and RMSE of P̂ >q for scenarios with k �10†

Distribution τ2 Nrep Mean bias Mean RMSE

Normal 0.002 50 0.15 0.29
Normal 0.002 300 0.07 0.19
Normal 0.010 50 0.06 0.20
Normal 0.010 300 0.01 0.12
Normal 0.250 50 −0.00 0.10
Normal 0.250 300 −0.00 0.09
Exponential 0.002 50 0.15 0.28
Exponential 0.002 300 0.08 0.18
Exponential 0.010 50 0.08 0.19
Exponential 0.010 300 0.04 0.13
Exponential 0.250 50 0.02 0.10
Exponential 0.250 300 0.00 0.09
t 0.002 50 0.12 0.26
t 0.002 300 0.04 0.17
t 0.010 50 0.04 0.17
t 0.010 300 0.01 0.11
t 0.250 50 −0.00 0.09
t 0.250 300 −0.00 0.09
Uniform mixture 0.002 50 0.16 0.30
Uniform mixture 0.002 300 0.08 0.21
Uniform mixture 0.010 50 0.08 0.22
Uniform mixture 0.010 300 0.03 0.14
Uniform mixture 0.250 50 0.01 0.11
Uniform mixture 0.250 300 0.01 0.09

†Statistics aggregate over the other manipulated simulation param-
eters that are not listed in the column headings.

are reported in the text consider each simulation scenario individually and include scenarios with
all sample sizes, and so differ from the means and maxima that are listed in aggregated tables.)

For all scenarios with k � 10, the bias of P̂>q was 0.05 on average and was at maximum
0.30. Bias occurred in scenarios with low heterogeneity, an extreme true proportion (E[P̂>q])
and either a small number of replication studies or small sample sizes in the replication stud-
ies. When there was a fairly large number (k = 25) of large replication studies (Nrep = 300), the
average bias was 0.02, and the maximum bias was 0.12. Alternatively, when heterogeneity was
high (τ2 =0:25), the maximum bias was 0.07 across all sample sizes and true proportions. The
bootstrapping-based inference appeared to compensate for occasional bias in P̂>q, as the mini-
mum coverage across all scenarios with k �10 was close to nominal (94%). Table 2 summarizes
the results for P̂>q for all scenarios with k � 10. These findings also point to the importance
of designing multisite replications with a sufficient number of sites and sufficient sample sizes
within each site, and we would encourage researchers designing multisite replication projects to
use the interactive simulation results (https://mmathur.shinyapps.io/RRR sims/) to
provide some preliminary guidance.

7. Applications to other replication designs

We have primarily discussed our metrics in the context of many-to-one designs conducted under
a shared replication protocol and in which population effects are heterogeneous. Here, we dis-
cuss other designs and settings to which the metrics proposed apply, potentially with modified
interpretations.
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7.1. Replications with no apparent heterogeneity
If a random-effects meta-analysis or similar individual subject level mixed model yields a neg-
ligible statistical estimate of heterogeneity (τ̂2 ≈ 0) with a CI including only small values, then
μ̂ can be interpreted as an estimate of the single population effect size underlying all replication
studies and will approximately coincide with the corresponding estimate from a fixed effects
meta-analysis or linear regression (Rice et al., 2018; Riley et al., 2011). Because heterogeneity
estimators can be highly variable when the number of studies is small (Veroniki et al., 2016),
it is important to report the CI for τ2 when adopting this ‘fixed effects’ approach. Under this
framework, Porig can still be informative to assess consistency and is interpretable as the proba-
bility that the original study’s point estimate would be at least as extreme as that observed if the
original study had unbiasedly measured the same population effect as the replication studies.
Without heterogeneity, Porig does not require a normality assumption and can be reported with
as few as one replication study, and it becomes a continuous counterpart to a prediction interval
in which all replication data are analysed in aggregate, without regard to site (on-line supple-
ment). The metrics P̂>0, P̂>q and P̂<qÆ are no longer relevant because all population effects are
estimated to be identical.

7.2. Single replications and one-to-one replications
Single replications or one-to-one replication projects preclude estimating heterogeneity for any
given replication study, and existing analysis approaches implicitly assume no heterogeneity. If
such an assumption is reasonable, then Porig can be computed by setting τ̂2 = 0, retaining the
same interpretation as above; of course, such analyses would need to be interpreted with caution
because the assumption of no heterogeneity is not testable in these designs.

7.3. ‘Many Labs’ designs
In designs in which multiple original studies are each replicated in many sites (Ebersole et al.,
2016; Klein et al., 2014; Schweinsberg et al., 2016), the metrics proposed permit direct com-
parison or aggregation of results across many-to-one replications of multiple original studies.
For example, one could estimate the proposed metrics for each original study and report the
average consistency, Porig, as a global summary measure of replication success. The average P̂>0
could also be reported as a global summary of replication evidence strength across numerous
scientific effects.

7.4. Conceptual replications
We have so far considered contexts in which all replications share a single protocol closely ap-
proximating that of the original study (sometimes called ‘direct replications’). However, some
researchers question using only direct replications in many-to-one designs, arguing that these de-
signs assess replicability of a specific operationalization of a theory, rather than of the theory
itself (Baumeister and Vohs, 2016). Others advocate supplementing direct replications with
‘conceptual replications’ that assess the same theory as the original study, but using a differ-
ent operationalization (Crandall and Sherman (2016), Lynch et al. (2015) and Monin et al.
(2014); see also dissent by Nosek et al. (2012) and Simons (2014)). For example, replication
sites in a conceptual many-to-one design could implement different experimental protocols,
each approved by the original researchers. Conceptual replications create heterogeneity by de-
sign, which exacerbates problems with the metrics that have been proposed before this paper
(e.g. often leading to particularly unfavourable assessments of consistency and inadequately
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1162 M. B. Mathur and T. J. VanderWeele

characterizing the strength of evidence). In contrast, our proposed metrics could simply be
applied without modification as they take into account heterogeneity across replications. They
would retain their original interpretations, but P̂>0 could then additionally be interpreted as the
probability that a new operationalization of the theory at stake would yield a population effect
size in the same direction as the theoretical prediction. Such an interpretation holds only when
the new operationalization under consideration can be treated as comparable with the range of
protocols that are considered in the conceptual replications.

8. Discussion

We have proposed intuitively tractable metrics (implemented in the R packages Replicate and
MetaUtility) for statistical consistency between the original study and replications and for
the strength of evidence in many-to-one replication designs with potential heterogeneity. Such
replication projects could report the new metric Porig to convey consistency and could report
the usual pooled estimate μ̂ and heterogeneity estimate τ̂2, plus P̂>0 (and possibly also P̂>q and
P̂<qÆ ) to reassess the strength of evidence for the scientific effect of interest. The metrics pro-
posed account for all relevant sources of statistical uncertainty and can therefore yield different
conclusions from existing metrics when the replications are heterogeneous. These metrics can
also help to identify situations in which there is good statistical consistency, but weak strength
of evidence for meaningfully strong effects (and vice versa). For example, a set of replications
estimating a small average effect size might be statistically consistent with a low powered orig-
inal study that estimated a large effect size yet may provide little evidence that the effects of
interest are of meaningfully strong size. In this case, Porig would be fairly large, indicating good
consistency, but P̂>q would be small, indicating a low proportion of meaningfully strong effect
sizes. Conversely, a set of replications estimating a moderate effect size may appear statistically
inconsistent with an original study estimating a large effect size but may nevertheless provide
strong evidence for meaningfully strong effect sizes.

The analyses proposed have limitations. We have assumed that the replications yield unbiased
estimates, which is often reasonable when the replications are preregistered and conducted by
third-party investigators. In contrast, other forms of replications, such as multiple experiments
reported in a published, non-registered paper, may be subject to the same biases as seen in
the published original research (Francis, 2012). As discussed, the metric Porig assumes that the
population effects are normally distributed; this assumption is already often used in pooled
effect estimation and is often testable in practice, and simulation results indicated that Porig is in
fact quite robust to non-normal distributions. The metric Porig also relies on accurate statistical
estimation of both the pooled effect size and its variance. When estimating these parameters via
random-effects meta-analysis, there are many possible choices of heterogeneity estimator, and
it is important to choose one that is known to perform well for the effect measure of choice,
particularly when the number of replication studies is relatively small (Veroniki et al., 2016).
Porig should be interpreted cautiously if both

(a) the amount of replication data is limited and
(b) heterogeneity appears high,

as these situations can lead to poor estimation of τ̂2. We have also suggested diagnostic plots to
help to identify problems in estimating τ̂2 that could propagate to Porig (Section 5). Additionally,
we do not recommend using Porig to conduct a dichotomous ‘hypothesis test’ of consistency (by
assessing whether Porig <0:05) between the original study and the replications; rather, Porig is a
continuous measure and is more informative when reported as such.
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Simulation results indicated that CI coverage for P̂>q and the related proportion metrics re-
mained near the nominal 95% in all scenarios, though point estimates may be biased when there
are few replications or small sample sizes in the replications. Therefore, we recommend reporting
CIs along with the proportion metrics and using simple bootstrapping-based diagnostics (Sec-
tion 5) to identify potential bias. When there are little replication data, estimating the amount of
heterogeneity can be inherently imprecise (Veroniki et al., 2016). This uncertainty propagates to
the CIs for the proportion metrics and, when there are little replication data, may result in con-
fidence intervals that span most or all of the possible range [0, 1]. Reporting CIs in these settings
may nevertheless be informative: a very wide CI may instill appropriate circumspection about
what can be learned from the replications, even if μ̂ itself may have a narrow CI. Additionally,
the bootstrapped CI may sometimes fail to converge when there are few replication studies or if
the threshold q is very far from μ̂; in these cases, one can try choosing a less extreme threshold.

In summary, the newly proposed metrics assess consistency of the original and replication
studies and also assess evidence for meaningfully strong effects while accounting for heterogene-
ity across the population effects. Such heterogeneity is fairly common in practice and can arise
due to differing subject demographics or protocol variations. If reported in many-to-one repli-
cation projects, the metrics proposed could help to address directly and intuitively the central
objectives of replication research. These metrics are mathematically simple but are nevertheless,
we believe, a useful supplement to current reporting practices to help to ground speculation
about ‘replication success’ quantitatively.

9. Reproducibility

All data, materials and code required to reproduce the applied analyses and simulation study
are publicly available, along with all code for the R packages MetaUtility and Replicate
(https://osf.io/ufjg4/). The simulation data can also be browsed interactively
(https://mmathur.shinyapps.io/RRR sims/).
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Additional ‘supporting information’ may be found in the on-line version of this article:

‘Supplement: New statistical metrics for multisite replication projects’.
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